Real Analysis Tutorials (1st week)

- 1. (a) Let $E_1 \supseteq E_2 \supseteq \cdots \supseteq E_n \supseteq E_{n+1} \supseteq \cdots$ be a decreasing sequence of measurable sets such that $m(E_1) < \infty$. If $E = \bigcap_{n=1}^{\infty} E_n$, then show that $\lim_{n \to \infty} m(E_n) = m(E)$.
 - (b) Let $E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq E_{n+1} \subseteq \cdots$ be an increasing sequence of measurable sets. If $E = \bigcup_{n=1}^{\infty} E_n$, then show that $\lim_{n\to\infty} m(E_n) = m(E)$.
- 2. (Borel-Cantelli Lemma) Let $\{E_n\}$ be a sequence of measurable sets with $\sum_{k=1}^{\infty} m(E_k) < \infty$. If $E = \{x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k\}$, then prove that m(E) = 0.
- 3. If A, B are subsets of \mathbb{R}^n such that d(A, B) > 0, then prove that $m^*(AUB) = m^*(A) + m^*(B)$, where m^* denotes the outer measure.

4. Invarinace Properties

- (a) If E is measurable, then prove that E + h is measurable and m(E + h) = m(E).
- (b) If E is measurable and r denotes rotation in \mathbb{R}^d around origin, then prove that r(E) is measurable and m(r(E)) = m(E).
- (c) If $T : \mathbb{R}^d \to \mathbb{R}^d$ is an orthogonal map and E is measurable, then show that T(E) is measurable and m(T(E)) = m(E).
- 5. If $\delta(x_1, x_2, \dots, x_d) = (t_1 x_1, \dots, t_d x_d)$ and if E is measurable, then $\delta(E)$ is measurable and $m(\delta(E)) = |t_1 t_2 \cdots t_d| m(E)$.

Annual Foundation School at Almora, Kumaun, December, 2014

- 6. If $L : \mathbb{R}^d \to \mathbb{R}^d$ is a linear map and E is measurable, then show that L(E) is measurable and $m(L(E)) = |\det L|m(E)$.
- 7. (a) If $S = \{(x, y) : ax + by + c = 0\}$ (a line in \mathbb{R}^2), then show that $m_2(S) = 0$ where m_2 is a 2-dimensional Lebesgue measure in \mathbb{R}^2 .
 - (b) If $S \subset \mathbb{R}^k \subset \mathbb{R}^n$, (k < n), then prove that $m_n(S) = 0$, where m_n is an *n*-dimensional Lebsegue measure in \mathbb{R}^n .
- 8. If f is a non-negative measurable function such that $\int_{\mathbb{R}^d} f = 0$, then prove that f = 0 a.e. on \mathbb{R}^d .
- 9. Give an example of a sequence $\{f_n\}$ of measurable functions such that $f_n(x)$ converges pointwise to f(x) a.e. but $\int f_n$ does not converge to $\int f$.
- 10. Define $g(z) = \int_{[0,1]} e^{z\log t} dt$ for $z \in \mathbb{C}$ such that Re(z) > 0. Show that g is continuos.
- 11. Let E_1, E_2 be compact sets in \mathbb{R}^d such that $E_1 \subset E_2$. Let $m(E_1) = a$ and $m(E_2) = b$. Prove that for any c such that a < c < b, there exists a compact set E such that $E_1 \subset E \subset E_2$ and m(E) = c.
- 12. Give an example of two measurable sets A and B such that A + B is not measurable.
- 13. Give an example of two closed sets A and B such that m(A) = m(B) = 0 but m(A + B) > 0.
- 14. Let f be an integrable function on \mathbb{R}^d .
 - (a) If $f_h(x) = f(x+h), h \in \mathbb{R}^d$, then prove that f_h is integrable and $\int f = \int f_h$.
 - (b) For $\delta > 0$, $f(\delta x)$ is integrable and $\delta^d \int f(x) = \int f(\delta x)$.
 - (c) If $h : \mathbb{R}^d \to \mathbb{R}^d$ is an orthogonal map, then show that $\int f \circ h = \int f$.
- 15. If f and g are integrable functions, then prove that

$$\int_{\mathbb{R}^d} f(x-y)g(y) = \int_{\mathbb{R}^d} f(y)g(x-y)$$

16. If f is integrable on $(-\pi, \pi]$ and extended periodically to \mathbb{R} with period 2π , then show that $\int_{-\pi}^{\pi} f = \int_{I} f$ for any interval I of length 2π . in